Overview¶
bioio-conversion¶
A BioIO conversion tool for going between image formats.
Documentation¶
See the full documentation on our GitHub Pages site:
Installation¶
Install from PyPI along with core BioIO and plugins:
pip install bioio-conversion
Python Package Usage¶
Available Converters¶
OmeZarrConverter
Purpose: Convert any BioImage-supported input (TIFF, CZI, ND2, etc.) into an OME-Zarr store.
Features:
Multi-scene export (
scenes=0, list, orNone= all)Flexible multiscale pyramid options (
level_shapes,num_levels,downsample_z)Chunk-size tuning (
chunk_shape,memory_target,shard_shape)Metadata options (
channels,axes_names,axes_units,physical_pixel_size)Output format (
zarr_format= 2 or 3)Optional auto Dask cluster
Import path:
from bioio_conversion.converters import OmeZarrConverter
BatchConverter
Purpose: Orchestrate batch conversions of many files (CSV, directory crawl, or explicit list).
Features:
Factory methods:
from_csv(),from_directory(),from_list()Shared
default_optsfor per-job overridesDispatch jobs via
.run_jobs()
Import path:
from bioio_conversion.converters import BatchConverter
Example: OmeZarrConverter¶
Minimal usage¶
from bioio_conversion.converters import OmeZarrConverter
conv = OmeZarrConverter(
source='image.tiff',
destination='out_dir'
)
conv.convert()
Advanced usage: full control¶
from bioio_conversion.converters import OmeZarrConverter
from zarr.codecs import BloscCodec
conv = OmeZarrConverter(
source='multi_scene.czi',
destination='zarr_output',
scenes=None,
name='experiment1',
tbatch=2,
num_levels=3,
downsample_z=True,
chunk_shape=(1,1,16,256,256),
shard_shape=(1,1,128,1024,1024),
memory_target=32*1024*1024,
dtype='uint16',
compressor=BloscCodec(),
zarr_format=3,
)
conv.convert()
Explicit level_shapes¶
conv = OmeZarrConverter(
source="image_tczyx.tif",
destination="out_tczyx",
level_shapes=[
(1, 3, 5, 325, 475),
(1, 3, 2, 162, 238),
(1, 3, 1, 81, 119),
],
)
conv.convert()
Channel metadata¶
from bioio_ome_zarr.writers import Channel
channels = [
Channel(label="DAPI", color="#0000FF", active=True,
window={"min":100, "max":2000, "start":200, "end":1200}),
Channel(label="GFP", color="#00FF00", active=True),
Channel(label="TRITC", color="#FF0000", active=False),
]
conv = OmeZarrConverter(
source="multi_channel.czi",
destination="out_channels",
channels=channels,
)
conv.convert()
Axes & physical pixel sizes¶
conv = OmeZarrConverter(
source="custom_axes.tif",
destination="out_axes",
axes_names=["t","c","z","y","x"],
axes_types=["time","channel","space","space","space"],
axes_units=[None, None, "micrometer","micrometer","micrometer"],
physical_pixel_size=[1.0, 1.0, 0.4, 0.108, 0.108],
)
conv.convert()
Example with fewer dimensions (3D ZYX)¶
conv = OmeZarrConverter(
source="volume_zyx.tif",
destination="out_zyx",
num_levels=2,
downsample_z=True,
)
conv.convert()
CSV-driven batch conversion¶
The CSV file should have a header row that names the job parameters. At minimum, include a source column (path to each input image). You may also include per-job overrides for any converter option (e.g. destination, scenes, tbatch, num_levels, downsample_z, level_shapes, memory_target, dtype, channel_names, etc.). Values in each row will be merged with the default_opts you passed to BatchConverter.
from bioio_conversion import BatchConverter
bc = BatchConverter(
converter_key='ome-zarr',
default_opts={
'destination': 'batch_out',
'tbatch': 4,
}
)
jobs = bc.from_csv('jobs.csv') # parse CSV into job dicts
bc.run_jobs(jobs)
Directory-driven batch conversion¶
from bioio_conversion import BatchConverter
bc = BatchConverter(default_opts={
'destination': 'dir_out',
})
jobs = bc.from_directory(
'/data/images',
max_depth=2,
pattern='*.tif'
)
bc.run_jobs(jobs)
List-driven batch conversion¶
from bioio_conversion import BatchConverter
paths = ['/data/a.czi', '/data/b.czi', '/data/c.zarr']
bc = BatchConverter(default_opts={
'destination': 'list_out',
'scenes': 0
})
jobs = bc.from_list(paths)
bc.run_jobs(jobs)
Command-Line Interface: bioio-convert¶
Single-file converter using the configured backend (default: OME-Zarr).
bioio-convert SOURCE -d DESTINATION [options]
Key options:
source(positional): input image path-d,--destination: output directory for.ome.zarr-n,--name: base name (defaults to source stem)-s,--scenes: scene(s) to export (0by default; comma-separated list;None= all scenes)--tbatch: timepoints per write batch (default:1)--start-t-src: source T index to begin reading (default: 0)--start-t-dest: destination T index to begin writing (default: 0)
Multiscale:
--level-shapes: semicolon-separated absolute shapes (level 0 first)--num-levels: number of pyramid levels (including level 0)--downsample-z: include Z in half-pyramid downsampling
Chunking / shards:
--chunk-shape: explicit chunk shape (e.g.1,1,16,256,256)--chunk-shape-per-level: semicolon-separated chunk shapes per level--memory-target: bytes per chunk (default: 16 MB)--shard-shape: shard shape (Zarr v3 only)--shard-shape-per-level: per-level shard shapes (Zarr v3 only)
Writer / metadata:
--dtype: output dtype override (e.g.uint16; default: reader’s dtype)--physical-pixel-sizes: comma-separated floats (per axis, level-0)--zarr-format:2(NGFF 0.4) or3(NGFF 0.5); default: writer decides
Channels:
--channel-labels: comma-separated channel names--channel-colors: comma-separated colors (hex or CSS names)--channel-actives: channel visibility flags (true,false,...)--channel-coefficients: per-channel coefficient floats--channel-families: intensity family names (linear,sRGB,...)--channel-inverted: channel inversion flags--channel-window-min/max/start/end: per-channel windowing values
Examples¶
Basic usage¶
bioio-convert image.tif -d out_dir
Custom name¶
bioio-convert sample.czi -d out_dir -n my_run
Export all scenes¶
bioio-convert multi_scene.ome.tiff -d zarr_out
Export specific scenes¶
bioio-convert multi_scene.ome.tiff -d zarr_out -s 0,2
Simple half-pyramid (XY only)¶
bioio-convert volume.tif -d out_xy --num-levels 3
Simple half-pyramid (XYZ)¶
bioio-convert volume_tczyx.tif -d out_xyz --num-levels 3 --downsample-z
Explicit level shapes¶
bioio-convert image.tif -d out_explicit \
--level-shapes "1,3,5,325,475;1,3,2,162,238;1,3,1,81,119"
Dtype and chunking¶
bioio-convert image.tif -d out_dir --dtype uint16 --memory-target 33554432
Custom channels¶
bioio-convert image_with_channels.czi -d out_dir \
--channel-labels DAPI,GFP,TRITC \
--channel-colors "#0000FF,#00FF00,#FF0000" \
--channel-actives true,true,false
Physical pixel sizes¶
bioio-convert image.tif -d out_dir --physical-pixel-sizes 1.0,1.0,0.4,0.108,0.108
Command-Line Interface: bioio-batch-convert¶
Batch mode: convert many files via CSV, directory walk, or explicit list.
bioio-batch-convert --mode [csv|dir|list] [options]
Examples¶
CSV mode¶
bioio-batch-convert \
--mode csv \
--csv-file jobs.csv \
--destination batch_out \
--tbatch 4 \
--dtype uint16 \
--num-levels 3
Directory mode¶
bioio-batch-convert \
--mode dir \
--directory data/ \
--depth 2 \
--pattern '*.czi' \
--destination output_zarr \
--level-shapes "1,3,5,325,475;1,3,2,162,238;1,3,1,81,119"
List mode¶
bioio-batch-convert \
--mode list \
--paths a.czi b.czi c.tiff \
--destination list_out \
--name batch_run \
--num-levels 2 --downsample-z
License & Issues¶
BSD 3-Clause https://bioio-devs.github.io/bioio-conversion/LICENSE
Report bugs at: https://github.com/bioio-devs/bioio-conversion/issues